Read counting with summarizeOverlaps in parallel mode using multiple cores

Reads overlapping with annotation ranges of interest are counted for each sample using the summarizeOverlaps function (Lawrence et al., 2013). The read counting is preformed for exonic gene regions in a non-strand-specific manner while ignoring overlaps among different genes. Subsequently, the expression count values are normalized by reads per kp per million mapped reads (RPKM). The raw read count table (countDFeByg.xls) and the correspoding RPKM table (rpkmDFeByg.xls) are written to separate files in the directory of this project. Parallelization is achieved with the BiocParallel package, here using 8 CPU cores.

library("GenomicFeatures"); library(BiocParallel)
txdb <- makeTxDbFromGFF(file="data/tair10.gff", format="gff", dataSource="TAIR", organism="Arabidopsis thaliana")
saveDb(txdb, file="./data/tair10.sqlite")
txdb <- loadDb("./data/tair10.sqlite")
(align <- readGAlignments(outpaths(args)[1])) # Demonstrates how to read bam file into R
eByg <- exonsBy(txdb, by=c("gene"))
bfl <- BamFileList(outpaths(args), yieldSize=50000, index=character())
multicoreParam <- MulticoreParam(workers=2); register(multicoreParam); registered()
counteByg <- bplapply(bfl, function(x) summarizeOverlaps(eByg, x, mode="Union", 
                                               ignore.strand=TRUE, 
                                               inter.feature=FALSE, 
                                               singleEnd=TRUE)) 
countDFeByg <- sapply(seq(along=counteByg), function(x) assays(counteByg[[x]])$counts)
rownames(countDFeByg) <- names(rowRanges(counteByg[[1]])); colnames(countDFeByg) <- names(bfl)
rpkmDFeByg <- apply(countDFeByg, 2, function(x) returnRPKM(counts=x, ranges=eByg))
write.table(countDFeByg, "results/countDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")
write.table(rpkmDFeByg, "results/rpkmDFeByg.xls", col.names=NA, quote=FALSE, sep="\t")

Sample of data slice of count table

read.delim("results/countDFeByg.xls", row.names=1, check.names=FALSE)[1:4,1:5]

Sample of data slice of RPKM table

read.delim("results/rpkmDFeByg.xls", row.names=1, check.names=FALSE)[1:4,1:4]

Note, for most statistical differential expression or abundance analysis methods, such as edgeR or DESeq2, the raw count values should be used as input. The usage of RPKM values should be restricted to specialty applications required by some users, e.g. manually comparing the expression levels among different genes or features.

Sample-wise correlation analysis

The following computes the sample-wise Spearman correlation coefficients from the rlog transformed expression values generated with the DESeq2 package. After transformation to a distance matrix, hierarchical clustering is performed with the hclust function and the result is plotted as a dendrogram (also see file sample_tree.pdf).

library(DESeq2, quietly=TRUE); library(ape,  warn.conflicts=FALSE)
countDF <- as.matrix(read.table("./results/countDFeByg.xls"))
colData <- data.frame(row.names=targetsin(args)$SampleName, condition=targetsin(args)$Factor)
dds <- DESeqDataSetFromMatrix(countData = countDF, colData = colData, design = ~ condition)
d <- cor(assay(rlog(dds)), method="spearman")
hc <- hclust(dist(1-d))
pdf("results/sample_tree.pdf")
plot.phylo(as.phylo(hc), type="p", edge.col="blue", edge.width=2, show.node.label=TRUE, no.margin=TRUE)
dev.off()

Figure 2: Correlation dendrogram of samples
Jump to: next_page